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Branching Brownian motion (BBM)

X position

Definition | >
@ A particle performs standard
Brownian motion started at a

point x € R. time
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Brownian motion started at a
point x € R. ~exp(B) time

o With rate 3, it branches, i.e. it
dies and spawns L offspring
(L being a random variable).
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X position
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@ A particle performs standard
Brownian motion started at a

point x € R. ~exp(p) time

o With rate 3, it branches, i.e. it
dies and spawns L offspring
(L being a random variable).

@ Each offspring repeats this

process independently of the
others.
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Branching Brownian motion (BBM)

X position

Definition } >
@ A particle performs standard
Brownian motion started at a

point x € R. ~exp(p) time

o With rate 3, it branches, i.e. it
dies and spawns L offspring
(L being a random variable).

@ Each offspring repeats this

process independently of the
others.

— A Brownian motion indexed
by a tree.
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Branching Brownian motion (BBM) (2)

We always suppose
m:=E[L] —1> 0.

Right-most particle

Let R; be the position of the
right-most particle. Then, as
t — 0o, almost surely on the
event of survival,

R,

Picture by Eric Brunet
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Branching Brownian motion (BBM) (2)

We always suppose
m:=E[L] —1> 0.

Right-most particle
Let R; be the position of the
right-most particle. Then, as
t — 0o, almost surely on the
event of survival,

Ry

We will henceforth set Picture by Eric Brunet

B =1/(2m).
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Two models of BBM with selection:
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Selection

X 0 position
| I >
>

y=-x+ct

Two models of BBM with selection:
l time

@ BBM with absorption: Let f(f)
be a continuous function (the
barrier). Kill an individual as soon
as its position is less than f(f).
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Selection

X 0 position

1 ] >
>

y=-x+ct

Two models of BBM with selection:
l time

@ BBM with absorption: Let f(f)
be a continuous function (the
barrier). Kill an individual as soon
as its position is less than f(f).

@ BBM with constant population
size (N-BBM): Fix N € N. As soon
as the number of individuals exceeds
N, only keep the N right-most
individuals and kill the others.
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Branching Brownian motion with absorption

-X 0 position
| I >
>

[R— Vast literature, known results (sample):

l We take f(t) = —x + ct (linear barrier).
time

@ almost sure extinction < ¢ >1
(¢ = 1; critical case
¢ > 1. supercritical case)

e growth rates for ¢ < L

@ asymptotics for extinction probability
forc=1-—¢, € small

Exact formulae for many quantities of
interest.
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BBM with constant population size

Recall: Fix N € N. As soon as the number
of individuals exceeds N, only keep the N
right-most individuals and kill the others.
Much less tractable than BBM with
absorption:

@ strong interaction between particles

@ no exact formulae

Picture by Eric Brunet
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BBM with constant population size

Picture by Eric Brunet

Pascal Maillard

Recall: Fix N € N. As soon as the number
of individuals exceeds N, only keep the N
right-most individuals and kill the others.
Much less tractable than BBM with
absorption:

@ strong interaction between particles
@ no exact formulae
Nevertheless: A fairly detailed heuristic
picture developed in the physics literature
over the course of ten years:

Brunet and Derrida (1997-2004)
with Mueller and Munier (2006-2007)
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Heuristic picture of N-BBM BbmMm 06

@ Meta-stable state: cloud of particles moving at speed

viet = /1 — 72/ log® N, empirical measure seen from the left-most

particle approximately proportional to sin(7x/log N)e™ L oq ny (%),
diameter ~ log N.
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@ Meta-stable state: cloud of particles moving at speed

viet = /1 — 72/ log® N, empirical measure seen from the left-most

particle approximately proportional to sin(7x/log N)e™ L oq ny (%),
diameter ~ log N.

e After a time of order log® N, a particle “breaks out” and goes far to the
right (close to ay = log N + 3 loglog N), spawning O(N) descendants.
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@ Meta-stable state: cloud of particles moving at speed

viet = /1 — 72/ log® N, empirical measure seen from the left-most

particle approximately proportional to sin(7x/log N)e™ L oq ny (%),
diameter ~ log N.
e After a time of order log® N, a particle “breaks out” and goes far to the
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@ This leads to a shift (O(1)) of the whole system to the right.
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Pascal Maillard Branching Brownian motion with selection 7119



Heuristic picture of N-BBM BbmMm 06

@ Meta-stable state: cloud of particles moving at speed

viet = /1 — 72/ log® N, empirical measure seen from the left-most

particle approximately proportional to sin(7x/log N)e™ L oq ny (%),
diameter ~ log N.
e After a time of order log’ N, a particle “breaks out” and goes far to the
right (close to ay = log N + 3 loglog N), spawning O(N) descendants.
@ This leads to a shift (O(1)) of the whole system to the right.

e Relaxation time of order log® N, then process repeats.

Pascal Maillard Branching Brownian motion with selection 7119



Heuristic picture of N-BBM BbmMm 06

@ Meta-stable state: cloud of particles moving at speed

viet = /1 — 72/ log® N, empirical measure seen from the left-most

particle approximately proportional to sin(7x/log N)e™ L oq ny (%),
diameter ~ log N.
e After a time of order log’ N, a particle “breaks out” and goes far to the
right (close to ay = log N + 3 loglog N), spawning O(N) descendants.
@ This leads to a shift (O(1)) of the whole system to the right.

e Relaxation time of order log® N, then process repeats.

Pascal Maillard Branching Brownian motion with selection 7119



Heuristic picture of N-BBM BbmMm 06

@ Meta-stable state: cloud of particles moving at speed
viet = /1 — 72/ log® N, empirical measure seen from the left-most
particle approximately proportional to sin(7x/log N)e™ L oq ny (%),
diameter ~ log N.

e After a time of order log’ N, a particle “breaks out” and goes far to the
right (close to ay = log N + 3 loglog N), spawning O(N) descendants.

@ This leads to a shift (O(1)) of the whole system to the right.

e Relaxation time of order log® N, then process repeats.

Real speed of the system is approximately

2 312 loglog N 1
Uy = I—Tr—zzl)g/et—F T Ogog3 +0(),
ay log” N

and 0O(1/ log® N) fluctuations.
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Rigorous results (1)

@ Bérard and Gouéré (2012): Prove the 1/log? N correction term to vy for
more general branching random walks (relying on results about BRW
absorbed at a linear barrier by Gantert, Hu and Shi (2011)).

@ 2xBerestycki and Schweinsberg (2013): Study BBM with absorption at a
linear barrier with slope vy — toy model for N-BBM. They show
convergence of the genealogy (as N — o0) to the Bolthausen-Sznitman
coalescent, on time scale (log N)3.

@ Durrett and Remenik (2010): Study empirical measure seen from left-most
particle in a certain N-BRW. Show convergence of its evolution to a
certain free-boundary convolution equation (without rescaling in time).

@ Mueller, Mytnik and Quastel (2010): Prove O(loglog N/ log3 N) correction
term for noisy FKPP equation.
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Rigorous results (2)

ay = log N + 3loglog N, vy = /1 — 7%/d%
X;(t): position of i-th particle to the right at time .

Theorem (M. "13+)
Suppose E[L?] < oo and at time 0, there are N particles distributed
X

independently in (0, ay) according to density proportional to sin(mwx/ay)e™*.
Then, for every o € (0,1),

di;
(Xan(tlog® N) — oytlog® N) _ 2% (L) ,s0.

£>0
Here, (L¢)¢>0 is a Lévy process with Ly = x,, (explicit), a certain (non-explicit)
drift and explicit Lévy measure (the image of m>x~ 214~ dx by the map

x — log(1+ x)).
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Rigorous results (2)

ay = log N + 3loglog N, vy = /1 — 7%/d%
X;(t): position of i-th particle to the right at time .

Theorem (M. "13+)
Suppose E[L?] < oo and at time 0, there are N particles distributed
X

independently in (0, ay) according to density proportional to sin(mwx/ay)e™*.
Then, for every o € (0,1),

di
(Xod\;(tlog3 N) — vytlog® N) ﬁ:S> (L) r>0-

£>0
Here, (L¢)¢>0 is a Lévy process with Ly = x,, (explicit), a certain (non-explicit)
drift and explicit Lévy measure (the image of m>x~ 214~ dx by the map

x — log(1+ x)).

Proof idea: Couple the N-BBM with BBM with a certain (random) absorbing
barrier.
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Simulation - Recentered position of barycenter
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The B-BBM: the approximate model

a = log N + 3loglog N — A: Position
of a second barrier (idea from BBS '10).

Drift: —y/1 — 7%/a?.

Let first N, then A go to oo.
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The B-BBM: the approximate model

a = log N + 3loglog N — A: Position
of a second barrier (idea from BBS '10).

Drift: —/1 — w2 /a?.

Let first N, then A go to oo. =a

When particle hits a, it will create
= ¢ AWN descendants, where (BBS '10) /breakom-

P(W >x) ~x}, x— 0. /ﬁ \ﬁ =1

Breakout when W > ece?, & small.
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The B-BBM: the approximate model

a = log N + 3loglog N — A: Position
of a second barrier (idea from BBS '10).

Drift: —/1 — w2 /a?.

Let first N, then A go to oo.

o

When particle hits a, it will create
= ¢ AWN descendants, where (BBS '10)

P(W > x)~x', x— oo.
Breakout when W > ece?, & small.

After breakout, move barrier smoothly
by random amount A = log(1 + W).

breakou

A
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B-BBM <+ N-BBM

First idea: couple both 0
processes.

e black particles: present
in B-BBM and N-BBM,

o red particles: present in
B-BBM but not in
N-BBM,

@ blue particles: present in

N-BBM but not in ,(
B-BBM.

Dependencies between
particles too difficult to handle.
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The solution

B*-BBM

RN

B-BBM N-BBM

N

B’-BBM

Introduce two auxiliary particle systems: The B’-BBM and the B#-BBM
(stochastically) bound the N-BBM (and the B-BBM) from below and above (in
the sense of stochastic order on the empirical measures).
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Bounding the N-BBM from below: The B’-BBM

Kill a particle
o whenever it hits 0 or

o whenever it has N
particles to its right
(red particles).

= more particles are being

killed than in N-BBM.

Pascal Maillard
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Bounding the N-BBM from below: The B’-BBM

Kill a particle
o whenever it hits 0 or

o whenever it has N
particles to its right
(red particles).

= more particles are being

killed than in N-BBM.

At timescale log3 N, number of
red particles stays negligible.

N
"

e od

b&.

\

3
)

Pascal Maillard

E %jgy

A
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Bounding the N-BBM from above: The B*-BBM

Kill a particle whenever
it (at the same time)

@ hits 0 and

@ has N particles to
its right.

A particle survives
temporarily

(blue particles) if it has
less than N particles to
its right the moment it
hits 0.
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N-BBM open problems

@ Long-time behavior:

e exact speed asymptotics
e empirical measure under equilibrium
o relaxation time of empirical measure

e Genealogy
e Show convergence to Bolthausen-Sznitman coalescent (at timescale
log3 N). Proven for BBM with near-critical absorption (BBS "10) and for
another N particle model called the exponential model (Brunet-Derrida,
Comets-Ramirez-Quastel, Cortines)
@ Durrett-Remenik free boundary equation
e convergence to travelling wave
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Related works/models

@ N. Berestycki, Zhao "4: d-dimensional N-BBM (keep N particles with
largest modulus). Show existence of a cloud of particles of width log N
and length (log N)3/2 moving at linear speed in a uniformly chosen
direction.

@ Mallein '15: BBM (actually, branching random walk), fix ¢ > 0. At time ¢,
keep only N; = exp(ct'/3) right-most particles (then ct = (log N)?).
Position of right-most particle at time #:

3 2
t— Z—ZZH“ + o(£/3).

Pascal Maillard Branching Brownian motion with selection 17719



Related works/models (2)

Mallein "15: BRW with slightly heavier tails (E[e*] < oo but possibly
E[X%eX] = o0) in the following regime:
e still linear speed of right-most particle

@ path of right-most particle “almost” an excursion of an «-stable Lévy
process, o € (0,2].

Considers N-BRW with these parameters. Shows that for some slowly varying
function L(x),
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Related works/models (2)

Mallein "15: BRW with slightly heavier tails (E[e*] < oo but possibly
E[X%eX] = o0) in the following regime:
e still linear speed of right-most particle

@ path of right-most particle “almost” an excursion of an «-stable Lévy
process, o € (0,2].

Considers N-BRW with these parameters. Shows that for some slowly varying
function L(x),

Note: in all of these works, basic tool is coupling with BRW/BBM with
absorption at a linear barrier.
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Related works/models (3)

Bérard, M. '14: N-BRW with regularly varying tails (e.g. P(X > x) ~ x~¢,
« > 0). Binary branching. Phenomenology much different than N-BBM:
@ Typically, most of the N particles are located near the minimum.
@ From this position, single particles jump to higher positions and create
new “colonies”.
@ A colony reaches a population size of order N after time log, N (if it
survived that long). At this time, it overtakes the whole population.
@ For a colony to reach this size, it has to be created at a new record
position.

X

Limiting behavior decribed by a
real-valued process R (t)
constructed out of a Poisson
process. A consequence (o > 1):

— Ral()

Rl 1)
X record points
x other points

vy ~ vg, (2Nlog N)Y/®/logN.

Pascal Maillard Branching Brownian motion with selection 19 /19



Related works/models (3)

Bérard, M. '14: N-BRW with regularly varying tails (e.g. P(X > x) ~ x~¢,
« > 0). Binary branching. Phenomenology much different than ]\kBBM:
o Typically, most of the N particles are located near the smyrfhtm.
@ From this position, single particles jump to higher {lons and create
new “colonies”.
@ A colony reaches a population size of oni r% after time log, N (if it
survived that long). At this time, it es the whole population.
@ For a colony to reach this lzeﬂlt‘P&as to be created at a new record
position. i
¥ : %0\} : Limiting behavior decribed by a
\ : : real-valued process R (t)
constructed out of a Poisson
process. A consequence (o > 1):

— Ral()

Rl 1)
X record points
% other points

vy ~ vr, (2Nlog N)/*/log N.
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BBM <— FKPP

Let g : R — [0,1] be measurable. Define
u(t, ) = Ex| T] g(xu(0)].
ueN;
Then u satisfies the following partial differential equation:

Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) equation

Owu = 30%u+ B(E[u"] — u)
u(0,x) = g(x) (initial condition)

The prototype of a parabolic PDE admitting travelling wave solutions.
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BBM <— FKPP

Let g : R — [0,1] be measurable. Define
u(t, ) = Ex| T] g(xu(0)].
ueN;
Then u satisfies the following partial differential equation:

Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) equation

Owu = 30%u+ B(E[u"] — u)
u(0,x) = g(x) (initial condition)

The prototype of a parabolic PDE admitting travelling wave solutions.

Duality between BBM and FKPP.

Pascal Maillard Branching Brownian motion with selection 1/3



Travelling waves

o(x)

Definition
A travelling wave of speed c is a solution of the FKPP equation of the form

u(t,x) = ¢(x — ct),

where ¢(x) is an increasing function with ¢(c0) =1 and ¢(—o0) = ¢q, where
q solves E[q"] = q.

v
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Travelling waves

o(x)

Theorem (KPP ’37)

e Travelling waves exist for every speed ¢ > 1 and are unique up to
translation.
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Travelling waves

o(x)

Theorem (KPP ’37)
e Travelling waves exist for every speed ¢ > 1 and are unique up to
translation.
o Starting from Heaviside initial data u(0, x) = 1>}, there exists a
centering term m(t), such that

t—o0

u(t,x + m(t)) — ¢(x).
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N-BBM <— noisy FKPP

u(t,x) : Ry x R — [0,1]
Ou=0%u+u(l —u) +/eull — )W
u(0,x) =l<q) (10

u]

L)

I

i

=
i

S

o

i)
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N-BBM <— noisy FKPP

u(t,x) : Ry x R —[0,]]
Ou=0%u+u(l —u) +/eull — )W
u(0,x) =lucg (10

e Dual to BBM with particles coalescing at rate ¢ Shiga '86
— density-dependent selection

u]

L)

I

i

=
i

S

o
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N-BBM <— noisy FKPP

u(t,x) : Ry x R — [0,1]
Ou=0%u+u(l —u) +/eull — )W
u(0,%) = gy (10)

e Dual to BBM with particles coalescing at rate ¢ Shiga '86
— density-dependent selection

@ Admits travelling wave solutions with same phenomenology as N-BBM
(N ~ ¢~ Mueller, Mytnik and Quastel '10

u]
L)

I
i
it
i
N
o
P
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