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Branching Brownian motion (BBM)

Definition

A particle performs standard
Brownian motion started at a
point x ∈ R.

With rate β, it branches, i.e. it
dies and spawns L o�spring
(L being a random variable).

Each o�spring repeats this
process independently of the
others.

−→ A Brownian motion indexed
by a tree.

positionx

time
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Branching Brownian motion (BBM) (2)

We always suppose
m := E[L]− 1 > 0.

Right-most particle

Let Rt be the position of the
right-most particle. Then, as
t →∞, almost surely on the
event of survival,

Rt
t
→
√
2βm.

Convention

We will henceforth set
β = 1/(2m).

Picture by Éric Brunet
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Selection

position0

time

. . .

-x

y = -x + ct

Two models of BBM with selection:

1 BBM with absorption: Let f (t)
be a continuous function (the
barrier). Kill an individual as soon
as its position is less than f (t).

2 BBM with constant population
size (N-BBM): Fix N ∈ N. As soon
as the number of individuals exceeds
N , only keep the N right-most
individuals and kill the others.
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Branching Brownian motion with absorption

position0

time

. . .

-x

y = -x + ct

We take f (t) = −x + ct (linear barrier).
Vast literature, known results (sample):

almost sure extinction ⇔ c ≥ 1
(c = 1: critical case
c > 1: supercritical case)

growth rates for c < 1.

asymptotics for extinction probability
for c = 1− ε, ε small

Exact formulae for many quantities of
interest.
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BBM with constant population size

Picture by Éric Brunet

Recall: Fix N ∈ N. As soon as the number
of individuals exceeds N , only keep the N
right-most individuals and kill the others.
Much less tractable than BBM with
absorption:

strong interaction between particles

no exact formulae

Nevertheless: A fairly detailed heuristic
picture developed in the physics literature
over the course of ten years:
Brunet and Derrida (1997-2004)

with Mueller and Munier (2006-2007)
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Heuristic picture of N -BBM BDMM ’06

Meta-stable state: cloud of particles moving at speed

vdetN =
√
1− π2/ log2 N , empirical measure seen from the left-most

particle approximately proportional to sin(πx/ logN )e−x1(0,logN )(x),
diameter ≈ logN .

After a time of order log3 N , a particle “breaks out” and goes far to the
right (close to aN = logN + 3 log logN ), spawning O(N ) descendants.

This leads to a shift (O(1)) of the whole system to the right.

Relaxation time of order log2 N , then process repeats.

Real speed of the system is approximately

vN =

√
1− π2

a2N
= vdetN +

3π2 log logN + o(1)

log3 N
,

and O(1/ log3 N ) fluctuations.
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Rigorous results (1)

Bérard and Gouéré (2012): Prove the 1/ log2 N correction term to vN for
more general branching random walks (relying on results about BRW
absorbed at a linear barrier by Gantert, Hu and Shi (2011)).

2×Berestycki and Schweinsberg (2013): Study BBM with absorption at a
linear barrier with slope vN → toy model for N -BBM. They show
convergence of the genealogy (as N →∞) to the Bolthausen–Sznitman
coalescent, on time scale (logN )3.

Durrett and Remenik (2010): Study empirical measure seen from left-most
particle in a certain N -BRW. Show convergence of its evolution to a
certain free-boundary convolution equation (without rescaling in time).

Mueller, Mytnik and Quastel (2010): Prove O(log logN/ log3 N ) correction
term for noisy FKPP equation.
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Rigorous results (2)

aN = logN + 3 log logN , vN =
√
1− π2/a2N

Xi(t): position of i-th particle to the right at time t.

Theorem (M. ’13+)

Suppose E[L2] <∞ and at time 0, there are N particles distributed
independently in (0, aN ) according to density proportional to sin(πx/aN )e−x .
Then, for every α ∈ (0, 1),(

XαN (t log3 N )− vN t log3 N
)
t≥0

fidis
=⇒ (Lt)t≥0.

Here, (Lt)t≥0 is a Lévy process with L0 = xα (explicit), a certain (non-explicit)
drift and explicit Lévy measure (the image of π2x−21x>0 dx by the map
x 7→ log(1 + x)).

Proof idea: Couple the N -BBM with BBM with a certain (random) absorbing
barrier.
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Simulation – Recentered position of barycenter

1010 particles
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The B-BBM: the approximate model

a = logN + 3 log logN − A: Position
of a second barrier (idea from BBS ’10).
Drift: −

√
1− π2/a2.

Let first N , then A go to ∞.

When particle hits a, it will create
� e−AWN descendants, where (BBS ’10)

P(W > x) ∼ x−1, x →∞.

Breakout when W > εeA, ε small.

After breakout, move barrier smoothly
by random amount ∆ ≈ log(1 +W ).

a0
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B-BBM ↔ N -BBM

First idea: couple both
processes.

black particles: present
in B-BBM and N -BBM,

red particles: present in
B-BBM but not in
N -BBM,

blue particles: present in
N -BBM but not in
B-BBM.

Problem

Dependencies between
particles too di�cult to handle.

0
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The solution

B]-BBM

N -BBMB-BBM

B[-BBM

Introduce two auxiliary particle systems: The B[-BBM and the B]-BBM
(stochastically) bound the N -BBM (and the B-BBM) from below and above (in
the sense of stochastic order on the empirical measures).
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Bounding the N -BBM from below: The B[-BBM

Kill a particle

whenever it hits 0 or

whenever it has N
particles to its right
(red particles).

=⇒ more particles are being
killed than in N -BBM.

At timescale log3 N , number of
red particles stays negligible.

0

N = 6
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Bounding the N -BBM from above: The B]-BBM

Kill a particle whenever
it (at the same time)

hits 0 and

has N particles to
its right.

A particle survives
temporarily
(blue particles) if it has
less than N particles to
its right the moment it
hits 0.

0

O(log2 N )

N = 3

< N particles!

< N particles!
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N -BBM open problems

Long-time behavior:
exact speed asymptotics
empirical measure under equilibrium
relaxation time of empirical measure

Genealogy
Show convergence to Bolthausen–Sznitman coalescent (at timescale
log3 N ). Proven for BBM with near-critical absorption (BBS ’10) and for
another N particle model called the exponential model (Brunet–Derrida,
Comets–Ramirez–Quastel, Cortines)

Durrett–Remenik free boundary equation
convergence to travelling wave
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Related works/models

N. Berestycki, Zhao ’14: d-dimensional N -BBM (keep N particles with
largest modulus). Show existence of a cloud of particles of width logN
and length (logN )3/2 moving at linear speed in a uniformly chosen
direction.

Mallein ’15: BBM (actually, branching random walk), fix c > 0. At time t ,
keep only Nt = exp(ct1/3) right-most particles (then ct = (logN )3).
Position of right-most particle at time t:

t − 3π2

2a2
t1/3 + o(t1/3).
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Related works/models (2)

Mallein ’15: BRW with slightly heavier tails (E[eX ] <∞ but possibly
E[X2eX ] =∞) in the following regime:

still linear speed of right-most particle

path of right-most particle “almost” an excursion of an α-stable Lévy
process, α ∈ (0, 2].

Considers N -BRW with these parameters. Shows that for some slowly varying
function L(x),

1− vN ∼
L(logN )

(logN )α
.

Note: in all of these works, basic tool is coupling with BRW/BBM with
absorption at a linear barrier.
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Related works/models (3)

Bérard, M. ’14: N -BRW with regularly varying tails (e.g. P(X > x) ∼ x−α,
α > 0). Binary branching. Phenomenology much di�erent than N -BBM:

Typically, most of the N particles are located near the minimum.
From this position, single particles jump to higher positions and create
new “colonies”.
A colony reaches a population size of order N after time log2 N (if it
survived that long). At this time, it overtakes the whole population.
For a colony to reach this size, it has to be created at a new record
position.

−1 1 2 30
t

x

Rα(t)
Rα(t − 1)
record points
other points

Limiting behavior decribed by a
real-valued process Rα(t)
constructed out of a Poisson
process. A consequence (α > 1):

vN ∼ vRα(2N logN )1/α/ logN .
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BBM ←→ FKPP

Let g : R→ [0, 1] be measurable. Define

u(t, x) = Ex
[ ∏
u∈Nt

g(Xu(t))
]
.

Then u satisfies the following partial di�erential equation:

Fisher–Kolmogorov–Petrovskii–Piskunov (FKPP) equation{
∂tu = 1

2∂
2
xu+ β(E[uL]− u)

u(0, x) = g(x) (initial condition)

The prototype of a parabolic PDE admitting travelling wave solutions.

Duality between BBM and FKPP.
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Travelling waves

0

q

1

c
 φ(x) 

Definition

A travelling wave of speed c is a solution of the FKPP equation of the form

u(t, x) = φ(x − ct),

where φ(x) is an increasing function with φ(∞) = 1 and φ(−∞) = q, where
q solves E[qL] = q.
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Travelling waves

0

q

1

c
 φ(x) 

Theorem (KPP ’37)

Travelling waves exist for every speed c ≥ 1 and are unique up to
translation.

Starting from Heaviside initial data u(0, x) = 1{x≥0}, there exists a
centering term m(t), such that

u(t, x +m(t))
t→∞−→ φ1(x).
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N -BBM ←→ noisy FKPP

Noisy FKPP equation
u(t, x) : R+ × R→ [0, 1]

∂tu = ∂2xu+ u(1− u) +
√
εu(1− u)Ẇ

u(0, x) = 1(x<0) (IC)

Dual to BBM with particles coalescing at rate ε Shiga ’86

−→ density-dependent selection

Admits travelling wave solutions with same phenomenology as N -BBM
(N ' ε−1) Mueller, Mytnik and Quastel ’10
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